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Impact of Biomimetic Pinna Shape Variation on Clutter

Echoes: A Machine Learning Approach

Ibrahim Eshera,* Sanmeel Lagad, and Rolf Miiller

Bats species navigating dense vegetation based on biosonar must obtain sensory
information about their environments from “clutter echoes”, i.e., echoes that are
superpositions from many unresolved reflecting facets (e.g., leaves) with unpre-
dictable individual waveforms. Prior results suggested that pinna deformations
can aid performance in sensing tasks based on deterministic echo patterns,
raising the question of whether varying pinna shapes can also have functional
significance for biosonar tasks performed on clutter echoes. To test this hypoth-
esis, this work investigates whether different pinna shapes have a consistent
effect on clutter echoes despite the random nature of these signals. This is
accomplished using a dedicated laboratory setup that produces large amounts of
uncorrelated clutter echo data by agitating artificial foliage with fans between
echo recordings. Deep learning then identifies the pinna shape that receives a
given clutter echo using a data-driven classification approach that learns features
directly from echoes without explicit physical modeling. A ResNet-50 achieves
97.8% overall classification accuracy for the pinna shape conformations (true-
positive identifications 91.67-100%), whereas a two-dimensional convolutional
neural network operating on echo spectrograms still achieves 90% accuracy.

number of bat species live in densely
vegetated habitats and therefore routinely
navigate in confined spaces between
foliage. These environments pose serious
challenges to mobilityl®® as well as bioso-
nar sensing.°’'" However, these animals
can navigate their challenging habitats by
relying on biosonar as their main modality
for sensing the environment.">*4

Two families of bats in particular, horse-
shoe bats (Rhinolophidael”) and Old
World round-leaf bats (Hipposideridae™),
each with about 70 species, stand out
due to unique adaptations that form a
physical substrate for a perception—action
loop. The animals have emitter and
receiver baffle-like structures, i.e., so-called
“noseleaves”'® and the outer ears
(pinnae,'”)). These structures can deform
in very short time intervals through highly
intricate musculatures that are unique to

These findings demonstrate that even small pinna deformations can impart

consistent effects on the clutter echoes.

1. Introduction

Bats are a group of animals that have achieved a remarkable evo-
lutionary success in terms of their number of species! as well as
the ecological niches that these species have occupied. A likely
key factor behind this evolutionary success is the unique echolo-
cation abilities seen in many bat species.” A considerable
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these bats, with some species having about
twenty muscles on each pinna.®

Previous work has demonstrated that the
noseleaf and pinna dynamics seen in bats
have an acoustic impact on the emitted and
received signals, respectively. These changes occur on a similar
time scale to the echoes (in one-tenth of a second™”)) and are
timed so that the respective baffle shapes deform while diffract-
ing the emitted pulse or the received echo.”*?% Furthermore,
shape changes in the noseleaf or pinna have been shown to
encode significant additional sensory information, which could
be highly beneficial for tasks such as direction finding. In partic-
ular, small deformations have been shown to result in the encod-
ing of additional sensory information between 60% and 80%,
significantly enhancing the direction-finding performance.*"

Bats that navigate through dense vegetation face challenges to
their biosonar sensing abilities that go far beyond the simple sce-
narios (especially direction finding for an isolated target) that
have been used in the evaluation of the bat pinna rotations
and deformations thus far. Echoes that originate from dense
clouds of scatterers, e.g., leaves in dense foliage, are known as
clutter.’? The defining characteristics of clutter are that the echo
waveforms are a superposition of components from many scat-
terers that have to remain unresolved due to lack of information
on the positions, orientations, and shape of the contributing scat-
terers.”’) As a result of this lack of knowledge regarding their
components, clutter echoes have to be treated as random and
unpredictable by nature which can make interpretation of clutter
sonar returns prohibitively difficult.
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Despite their random nature, foliage echoes could still contain
useful information for bats. Prior work has shown, for example,
that clutter echoes can be used to detect passageways in foliage
without the need to resolve the location of the scatterers.***"!
Similarly, it was possible to identify locations in forest environ-
ments on a large scale (i.e., more than 10 kilometers'**)) as well as
on a small scale (i.e., with a resolution well below 10 metersm]).
However, all preliminary studies on the potential use of clutter
echoes by bat biosonar or its biomimetic reproductions have
used a static sonar periphery. The effects of a dynamic periphery
which appears to be a key component of the sonar system of rhi-
nolophid and hipposiderid bats have not been studied in this con-
text so far.

Given that the prominent peripheral dynamics appear to coin-
cide with the ability to navigate and hunt in dense vegetation
across different bat groups,'®*! it could be hypothesized that
these dynamics are beneficial for the encoding and/or extraction
of sensory information from clutter echoes. However, it could
also be argued that the random and unpredictable nature of
the clutter echoes might obfuscate any informative signatures
that may be created by the peripheral dynamics, and would there-
fore only be of potential use for simpler targets that produce
deterministic echo signatures. Finally, it could also be the case
that while the signatures introduced by the peripheral dynamics
are detectable in the clutter echoes, they serve no functional role
in encoding or extracting sensory information.

Determining which of these competing hypotheses applies to
operating a biomimetic sonar with peripheral dynamics in a clut-
tered environment will depend on the objectives of the sensory
tasks at hand and the conditions under which they have to be
performed. In fact, it could very well be that the peripheral
dynamics are important for certain sensory tasks that are per-
formed under certain conditions, but not for other tasks or even
the same task performed under different conditions.

To avoid making an arbitrary choice regarding the task and the
pertinent conditions at this early stage of investigating the poten-
tial role of the peripheral dynamics for encoding/extracting sen-
sory information into/from clutter echoes, the current study has
been aimed at establishing whether the peripheral dynamics
have a consistent effect on the incoming clutter echoes. If such
a consistent effect does not exist, the dynamics cannot have any
useful effect on sensory information encoding or extraction.
Hence, in the absence of a consistent effect, it would probably
not be worth pursuing this line of inquiry any further. If a con-
sistent effect exists, it could still be the case that the effects cannot
serve any useful function, so it would still need to be established
whether the performance in any specific biosonar task can ben-
efit from these effects. However, the insight that is the goal of the
present study would make it worthwhile to pursue this research
further and assess the potential impact of the peripheral dynam-
ics on different clutter-based biosonar tasks.

In the present study, we have used a data-driven method based
on deep learning classification to establish the existence of a con-
sistent effect of the peripheral dynamics in the clutter echoes.
Rather than modeling the echo transformations explicitly, deep
neural networks were trained to learn distinguishing features
directly from the spectrograms of the recorded echoes. A large
number of clutter echoes that are suitable for this purpose were
obtained from a laboratory setup that was designed to create data
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that matches the structure of clutter echoes from natural environ-
ments. If correct classification of the pinna shape conformation
that received a given clutter echo is possible, this is experimental
evidence for an effect of pinna shape on clutter echoes that is
consistent and hence potentially exploitable despite the random
nature of the clutter-echo waveforms.

2. Experimental Section

2.1. Acoustic Setup

The acoustic elements of the biomimetic sonar system used in
this research were a single emitter and a single receiver, each
with a biomimetic baffle surrounding it that was designed to
mimic the respective interfaces in horseshoe bats (family
Rhinolophidae). The emitter structure was designed to mimic
the noseleaf, i.e., a “megaphone-like” emission baffle, of the
greater horseshoe bat (Rhinolophus ferrumequinum,*)). The nose-
leaf was scaled up in size by a factor of about 1.7 relative to the
biological model. As a result of this scaling, the noseleaf had a
total height (tip of lancet to base of anterior leaf) of ~50 mm and
the “nostrils”, i.e., the outlets for the ultrasound, were ~3.5 mm
in diameter and spaced 5.5 mm apart. Two electrostatic ultra-
sonic transducers (Series 600 open-face ultrasonic transducer,
diameter 38 mm, SensComp, Livonia, MI, USA) with a —6dB
passband from =~45kHz to 75kHz and a maximum response
at 55kHz were used to generate the ultrasonic emissions.
One transducer each was connected to the nostrils in the biomi-
metic noseleaf via a conical waveguide ~10 cm in length. The
receiver structure was a reception baffle designed to mimic
the pinna, i.e., the outer ear, of a horseshoe bat. The geometry
of the pinna model was adapted from previous simplifications of
the greater horseshoe bat (Rhinolophus ferrumequinum) pinna
geometry.””! The aperture of the pinna, which represents the
sound-receiving region relevant for diffraction toward the ear
canal, measured ~50 mm in height. The ultrasonic echoes were
recorded with MEMS capacitive microphones (Monomic,
Dodotronic, Rome, Italy) placed at the end of an artificial “ear
canal” (length 10 mm) that was attached to each pinna model.

To replicate the nonrigid nature of the pinna motions in horse-
shoe bats, deformations were generated by virtue of a biomimetic
dynamic pinna model with three soft-robotic bending actuators
used in prior work.*>*" The bending action of each of the three
actuators was then discretized into ten possible states, where
state “zero” corresponded to a completely undeformed state of
the respective actuator, and state “ten” corresponded to the max-
imally deformed state of the respective actuator.

Deforming the three actuators independently to any of the ten
states would generate a total number of 59 049 possible pinna
deformation states. Of this large number of possibilities, ten con-
formation states with various degrees of shape deformation were
chosen (Figure 1) as qualitatively representative examples of the
various pinna shape conformations that have been observed in
greater horseshoe bats.'”! The set of the ten shape conformation
states selected for experimentation included symmetric actuator
activations (i.e., all actuators activated equally), asymmetric acti-
vations (i.e., single-actuator activations), as well as deformations
due to partial or full actuator activation. Within the sample set of
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Figure 1. Shape conformations tested: a) dynamic bat-pinna model with three actuators used to create the set of tested conformations; b) subset
containing undeformed, half-deformed, and fully deformed shape conformations created by bending all three actuators on the pinna to the same extent;
c) conformation subset created by bending one of the three of the actuators on the pinna at half its maximum and independently of the two others;
d) conformation subset created by fully deforming one of the three of the actuators on the pinna independently of the two others; and e) conformation
subset created by bending two of the three actuators to their maximum and the remaining actuator to half its maximum.

deformation, the minimum overall displacement applied to any
individual actuator from the undeformed state was ~1cm
(corresponding to a change in actuator state from 0 to 5), while
the maximum overall displacement reached ~2 cm (corresponding
to a change in actuator state from 0 to 10).

The pulse waveform consisted of a carrier with a linear down-
ward frequency modulation from 100kHz to 20kHz over a
duration of 3 ms that was gated with a Hamming window that
then served as the pulse envelope. While horseshoe bats
typically employ constant frequency (CF) components followed
by frequency modulated sweeps of a smaller bandwidth (up to
26 kHz,®), this synthetic pulse was designed to assess the infor-
mation content and acoustic properties of the pinna models over
the entire frequency band of the recording system, independent
of species-specific time-frequency biosonar characteristics in
the bats.

The digital pulse waveform was converted to an analog output
with a conversion rate of 500 kHz and a resolution of 16 bits. The
echo recordings were digitized with the same sampling rate and
resolution that were used for creating the pulse waveforms
(PXIe-6356 data acquisition system used for digital-to-analog
and analog-to-digital conversion, National Instruments, Austin,
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Texas, USA). The returning echoes were recorded over a duration
of 15 ms each, synchronized to start with the beginning of the
respective pulse. To serve as input for the classification experi-
ments, a signal segment with a duration of 4 ms was selected
from each echo recording. The duration of this signal segment
was chosen to cover the depth of the foliage (50 cm, i.e., 3ms
time of flight) plus a safety margin to capture any echo compo-
nents that could arise due to multipath reflections within the
foliage.

Selected pinna conformation states (numbers 1, 2, and 3,
Figure 1) were characterized by virtue of experimental measure-
ments of their beampatterns for a set of different frequencies
(40kHz, 60 kHz, 80 kHz, Figure 2). These beampatterns reflect
the shape-dependent acoustic properties of the pinna, including
variations in beam directionality and sidelobe structure.

2.2. Experimental Design

The sonar setup was placed in an enclosure with approximate
dimensions of 2 x 2 x 2m (length x width x height) that was
surrounded by artificial foliage on three of the side walls
(Figure 3).
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Figure 2. Example beampatterns measured for three of the ten studied pinna shape conformations (1, 2, 3 — different rows) at a low (40 kHz), medium

(60 kHz), and high (80 kHz) frequency (different columns), respectively.
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Figure 3. Experimental data collection setup: a) physical setup and b) the control scheme for the experiments. Between each echo reception, fans were
operated to ensure that the arrangement of the leaves in the artificial foliage differed from echo to echo.

The artificial foliage consisted of plastic leaves that were approx-
imately elliptical in shape, with an average length of 5 cm, a width
of 3cm, and a thickness of 0.2 mm. Since the specific acoustic
impedances of plastic materials are similar to those of biological
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soft tissues (one to a few MRayl*”) and hence four orders of mag-
nitude larger than air (413 Rayl,*®)) for any of these materials, the
diffraction behavior of the plastic leaves can be expected to be iden-
tical to that of biological leaves to a very good approximation.
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The total thickness of the foliage layer was ~0.25 m. The den-
sity of the foliage was estimated by manually counting the num-
ber of leaves within representative 10 cm x 10 cm segments of
the foliage layer, yielding an estimated density of 16, 000 leaves
per cubic meter. Hence, with the thickness of the foliage, about
4,000 leaves can be expected within each square-meter segment
of the artificial foliage.

The floor and ceiling were not covered with artificial foliage
due to the low sonar gains observed in these directions. In this
setup, the noise floor in the ultrasonic recording was around
—66 dB relative to the maximum amplitude of the echoes. The
minimum and maximum Fraunhofer distances?®* of the biomi-
metic sonar emitter were estimated as 0.30 m and 1.4 m, respec-
tively, based on a receiver aperture width of 5cm and the
operating frequency range from 20 kHz to 100 kHz. The sonar-
head was placed at a minimum distance of 1.4 m away from the
artificial foliage in any direction. This placement ensured that all
reflections were received under far-field conditions.

The complete biomimetic sonar assembly (transmitter and
receiver) was mounted on a pan-ilt unit (D-48 E, FLIR,
Wilsonville, Oregon, United States) that was used to sweep
the orientation of the sonarhead over a range of different orien-
tations in the azimuth and elevation. These rotations covered a
range of £15°in azimuth and £7.5° in elevation. These ranges
were determined by averaging the beampatterns of all the
selected pinna shape conformations and identifying the average
—6dB gain region. The limits on the range of sonarhead orien-
tations ensured that all major reflections originated solely from
the artificial foliage (Figure 4).

Data acquisition was controlled (Figure 3) so that between
each pair of subsequent echo recordings, three large high-
velocity drum fans, (Hyper Tough, SFDE-500B3-1, Libertyville,
Ilinois, United States), with an air throughput of 3.3m>*S™!
each, could be activated to perturb the positions and orientations
of the leaves in the foliage. To assess the effectiveness of the con-
trol scheme for ensuring that each recorded echo was unique, an
experiment was conducted to estimate the correlation structure
of echoes that were recorded with and without the use of the fans
to alter the artificial foliage between the recordings. For these
tests, a single pinna shape was used and four echo datasets were
collected under the following conditions: (a) sonarhead in a fixed
orientation and without operating the fans, (b) sonarhead in a
fixed orientation with operating the fans, (c) varying sonarhead
orientations, without operating the fans, and (d) varying orienta-
tions with operating the fans. For conditions in which the orien-
tation of the sonarhead was varied, the pan tilt unit was rotated
from —10° to +10° in azimuth and from —3° to +3° in elevation,
in steps of 1° for both angular dimensions. For each condition, a
dataset consisting of 1000 foliage echo samples was collected.
The echo samples were windowed (as described above) to isolate
the echo signal from the foliage thus allowing the analysis to
focus solely on the effects of foliage agitation. The cross-
correlation matrix for each dataset was computed,*” where
the diagonal elements represent the autocorrelation of each echo
signal while the off-diagonal elements represent the cross-corre-
lation between different echo signals. All entries in the correla-
tion matrix were normalized to an autocorrelation value of one.

For shape conformation experiments, a total of 14,880 individ-
ual echo samples were collected equally across all ten shape
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classes, i.e., 1,488 echo samples per pinna shape conformation
state. The dataset was split into three subsets as follows: 60% of
the dataset was set aside for training, 20% for testing, and 20%
for validation. This split remained constant across all experi-
ments conducted to ensure repeatability and consistent evalua-
tion across all tested networks.

A bandpass filter (20kHz to 100kHz, 6th-order IIR
Butterworth design) was applied to all echo signals to filter
out frequencies not covered by the spectrum of the employed
pulses. As input for shape-conformation classification experi-
ments, the bandpass-filtered echoes were converted into
spectrogram representations (Hanning window with a length
of 256 samples, FFT length 256 samples, 50% window overlap).
This choice of window length and overlap resulted in a spec-
trogram representation that contained 14 points along the time
dimension. Along the frequency dimension, the spectrogram
representations were cropped to the passband (20kHz to
100 kHz).

Deep learning network architectures with varying complex-
ity and numbers of parameters were evaluated for their ability
to determine the pinna shape conformation from the spectrogram
representations of the clutter echoes (Figure 5): ResNet-18,
ResNet-34, ResNet-50, ResNet-152, and simple 2-D convolutional
neural network.*®*”) All tested ResNet network architectures
(Figure 5a) incorporated the standard ResNet architecture with
groups of convolution blocks (Figure 5b) and identity blocks
(Figure 5c¢). Each convolution block employed either a basic block
(used for ResNet-18 and ResNet-34) or a bottleneck block (used
for ResNet-50 and ResNet-152). The basic block contained two
convolutional layers with kernel sizes of 3x3 and 1x1,
followed by batch normalization and ReLU activation.*® The bot-
tleneck block included three convolution layers: a 1 x 1 convolu-
tion for channel reduction, a 3 x 3 convolution for spatial feature
extraction, and another 1 x 1 convolution for channel expansion.
The identity blocks mirrored the convolution block structure but
retained the input dimensions via skip connections, ensuring
that the residual path propagated through the network. The over-
all design (Figure 5a) was complemented by a parallel architec-
ture (Figure 5d) representing a simpler 2-D convolutional neural
network. This parallel network consisted of a 3 x 3 convolution,
followed by 2 x 2 max pooling, and a series of dense layers lead-
ing to a softmax classifier. All networks were implemented in
TensorFlow!®” (version 2.9.0) via the Keras interface library!*’!
(version 2.4.3) and the Python programming language (version
3.8.18). All training and inference were conducted on a graphics
card (GeForce RTX 3090, NVIDIA, Santa Clara, California, USA)
with the CUDA application programming interface!*!! (version
12.6). In training the network, the Adam optimization algo-
rithm™*? was used to update the network weights. Categorical
cross-entropy was used as a measure for training loss.**!
Network performance was found to converge within 100 epochs.

A uniform manifold approximation and projection (UMAP)
analysis on the final hidden layer of the network was applied
to examine the separation between various pinna shapes in
two-dimensional space (Figure 6,1*). The UMAP transformation
provided a low-dimensional representation of the high-dimensional
features from the network’s final hidden layer. This representa-
tion preserved the local and global structure of the data, enabling
clearer identification of patterns related to distinct pinna shapes.
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Figure 4. Example of the echo recordings obtained: a) raw echo waveform; b) spectrogram of the full recording including the direct pass-through of the transmit
signal 3 ms linear chirp from 100 kHz to 20 kHz, with a Hanning window as envelope) trailed by clutter echoes; and c) clutter echoes example (=4 ms duration)
segmented from the recording. The clutter-echo segment was used as input to the deep learning classifier for the pinna shape conformation.

To assess how the information about the shape conformation  data which divided it into 1 ms segments, with a 0.5 ms overlap
of the pinna model was distributed over the duration of the  between consecutive windows. This created a series of 1 ms snip-
echoes, a sliding window was applied to the 4 ms recorded echo  pets, each capturing a slightly different portion of the original
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Figure 5. Correlation matrix of the collected echo dataset for: a) clutter echo samples collected in a fixed orientation without operation of the fans used to
agitate the foliage, leading to a strong correlation in the dataset; b) clutter echo samples collected in a fixed orientation with fans activated to agitate the
foliage between each pair of echo recordings, leading to a significant decrease in correlation; c) clutter echo samples collected with a varying orientation
without operation of the fans used to agitate the foliage; and d) clutter echo samples collected with a varying orientation with fans activated to agitate the

foliage between each pair of echo recordings.

4 ms data. The classifier network was then retrained on each of
these 1 ms segments (Figure 7).

The relative importance of information encoding in the time
and frequency domain was assessed using the time-frequency
trade off of the Fourier transform: Echo spectrograms with win-
dow lengths ranging from 0.05% of the input signal length to
100% of the input signal length were tested with ResNet-18,
ResNet-34, ResNet-50, ResNet-152, and a simple 2-D convolu-
tional neural network, with ~58M, 24M, 21M, 12M, and 40k
parameters, respectively (Figure 7). Spectrograms were com-
puted by applying short-time Fourier transforms (STFT) with var-
iable window lengths ranging from 0.05% to 100% of the input
signal duration. For short windows, the transform emphasized
temporal precision with coarse spectral resolution, approximat-
ing a time-domain representation. For long windows approach-
ing the full signal length, the transform captured detailed
spectral content with no temporal resolution, effectively creating
a pure frequency-domain representation. At the other extreme, a
pure time-domain representation was used as input to the tested
networks.

Adv. Intell. Syst. 2025, 202500442 €202500442 (7 of 13)

To investigate the impact of signal bandwidth on classification
accuracy, a series of experiments were conducted using a ResNet-
50 architecture with fixed STFT parameters. The STFT window
length was set to ~240% of the signal duration. The signal spectro-
grams were then truncated along the frequency dimension to
bandwidths ranging from 10kHz to 70 kHz, in 10kHz incre-
ments. A bandwidth of 15 kHz was evaluated in addition since
it corresponds to the scaled bandwidth of the dominant har-
monic in greater horseshoe bats.®) The center frequency for
all tested bandwidth values was fixed at 50 kHz, which corre-
sponds to a frequency of 85 kHz on the size scale of a greater
horseshoe bat since the noseleaf and pinna models were scaled
by a factor of 1.7 relative to the bat. This frequency is close to the
CF components in the dominant harmonic of the greater horse-
shoe bat’s echolocation calls (e.g., 84 kHz=+0.5kHz in the
UK™®)). All frequency-truncated spectrograms were passed
through the same training pipeline to ensure consistency
across conditions. The 1.7 scaling factor was selected to
accommodate the physical size of the ultrasonic transducers
and simplify fabrication and handling of the structures. The

© 2025 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH
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Figure 6. Deep learning network architectures (ResNet-18, ResNet-34, ResNet-50, ResNet-152, and a simple 2-D convolutional neural network) used
to identify the pinna shape conformation given the spectrogram of a single clutter echo: a) overall ResNet architecture, b) architecture of an indi-
vidual convolution block showing the basic block used for ResNet-18 and ResNet-30 and the bottleneck block used for ResNet-50 and ResNet-152,
c) the identity block architecture with three convolutional layers and the original input propagated in parallel, and d) the 2-D convolutional neural

network architecture used.
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Figure 7. Performance of the shape classifier: confusion matrix for the ResNet-50 classifier architecture operating on the 4 ms clutter segments
(Figure 4c) from the previously unseen test dataset. The average accuracy over all shape conformations was 97.8%.
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scaling preserves geometric similarity, allowing key acoustic phe-
nomena such as diffraction and the resulting beam formation to
scale proportionally under the assumption of constant wave-
length-to-size ratios. As a result, key acoustic properties—in
particular beampatterns—were shifted downward in frequency
but remained qualitatively and quantitatively identical to the
biological model.

3. Results

The reception beamwidth at —6 dB for the different pinna shapes
tested was ~40°(£20°) total angular range in both azimuth and
elevation. On the surface of the artificial foliage, this corre-
sponded to an illuminated a circular footprint with radius
~1m. At a level of —10dB, the beamwidth had increased to
~60° (£30°) total angular range in both azimuth and elevation,
corresponding to an illuminated circle of ~1.6 m radius. Based
on the sonar footprint estimated from these beamwidths, an esti-
mated number of 16 000 leaves could have contributed to a single
echo at —6 dB. For all analyzed frequencies, the different shape
conformations (1, 2, 3) resulted in beampatterns that differed in
their width as well as in their shape (Figure 2). The average
change in beamgain due to changes in pinna shape conforma-
tion was /13.47 dB across all pairwise shape comparisons and
the three frequencies tested. For the individual frequencies,
the average differences were 13.40dB at 40kHz, 13.75dB at
60kHz, and 13.30dB at 80 kHz.

www.advintellsyst.com

The correlation structure of the echo datasets depended on the
respective experimental conditions (Figure 8, Table 1). For a
static sonarhead and foliage (e.g., no fan agitation, condition a),
the correlation matrix showed a broad diagonal ridge of high cor-
relation values (Figure 8a) with average off-diagonal values of
0.76 (Table 1a). Turning the fans on, but keeping the sonar ori-
entation fixed resulted in a similarly broad diagonal correlation
structure (Figure 8b) but with greatly reduced correlation values
(average 0.22, Table 1b). Varying the orientation of the sonar
resulted in a much narrower diagonal (Figure 8c) with average
off-diagonal correlation values similar to those achieved by acti-
vation of the fans (0.25, Table 1c). Finally, activating the fans in

Table 1. Summary statistics for the off-diagonal elements in the
correlation matrices for the different experimental setup conditions
tested. Each column corresponds to a different experimental condition:
conditions: (a) fixed sonar orientation, fans off; (b) fixed sonar
orientation, fans on; (c) varying sonar orientation, fans off; and (d)
varying orientation, fans on.
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Figure 8. Separation of the clutter echo dataset for the different shape conformations: UMAP analysis on the final layer of the ResNet-50 network
architecture showing distinct cluster separation for the ten pinna shape conformations in two dimensions.
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addition to changing the orientation of the sonarhead, resulted
only in a very small decrease of the average correlation values
(to 0.24, Table 1d). Regardless of whether the sonarhead was static
or rotated, activating the fans did result in a large decrease in the
maximum off-diagonal correlation values (from 0.9 to 0.69 for the
static sonarhead, and from 0.93 to 0.76 for varying sonar orienta-
tion, Table 1). Similarly, the diagonal ridge that was present in the
structure of the correlation matrices whenever the sonarhead
remained static was reflected in a higher standard deviation values
(0.1 and 0.16 for static vs 0.07 and 0.05 for rotations, Table 1).

100

www.advintellsyst.com

For the classification of the different pinna shape conforma-
tions, the overall highest performing network was a ResNet-50
architecture operating on spectrogram inputs computed with a
window length of ~40% of the signal duration and showing an
overall classification accuracy of 97.8% (Figure 9). The overall
lowest performing network was a 2-D convolutional neural net-
work architecture operating on time-domain inputs (10%).
For the ResNet-50 architecture with the best classifier perfor-
mance, the highest confusion (4.25%) was found between
shape conformations 2 and 4 (Figure 10). The true positive
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Figure 9. Effect of the time—frequency resolution trade-off on shape classification accuracy using different network-architectures: 2-D convolutional neural
network (blue), ResNet-18 (red), ResNet-34 (green), ResNet-50 (yellow), and ResNet-152 (purple). The highest classification accuracy was achieved with a
ResNet-50 architecture with an overall classification accuracy of 97.8%. The lowest classification accuracy achieved was 10% with the 2-D convolutional
neural network architecture.
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Figure 10. Classification of the different pinna shape conformations based on different time segments of the clutter echoes: test accuracy based on
different time segments of the echoes extracted by virtue of 1 ms-duration sliding windows that were applied across the 4 ms clutter-echo segment with
0.5 ms overlap.
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Figure 11. Classification accuracy as a function of bandwidth centered around a frequency of 50 kHz (corresponding to 85 kHz on the size scale of the
greater horseshoe bats). The shaded region indicates the bandwidths of the second harmonic in the biosonar pulses of greater horseshoe bats (26 kHz,®!)

scaled according to the size of the model used here (15 kHz).

rate for the different pinna shape conformations ranged
from 91.67% to 100%. The three shape conformations
with a perfect recall were the upright conformation (1) and
two conformations with the largest deformations (7 and 10,
Figure 10).

Classification performance for all studied network architec-
tures was found to be susceptible to the time-frequency trade-
off in the input spectrograms (Figure 9): The lowest classification
performances for all networks were found on pure time-domain
signal representations increasing rapidly with fast Fourier trans-
form (FFT) window length and hence frequency resolution.
Classification accuracy reached a broad optimum for FFT win-
dow lengths around 20%-30% of the signal duration. For longer
FFT windows, a slight decrease in classification performance
occurred (down to 91.78%).

The identification of the different pinna shape conformations
was found to be possible on 1 ms-long sliding windows that were
positioned across the 4ms clutter-echo recording in steps of
0.5ms overlap (Figure 7). The best performance achieved for
these windows was a classification accuracy of 69.35% with clas-
sification performance decreasing to about 10% at both ends of
the echo recording.

Classification accuracy increased monotonically as the avail-
able bandwidth increased. With a narrow 10kHz passband,
the model achieved only 77.9% accuracy. Accuracy improved
steadily with bandwidth, exceeding 95% for bandwidths of
60 kHz and greater. The highest performance of 97.8% accuracy
was achieved when the entire passband of the transmitted pulses
(20kHz to 100 kHz) was used (Figure 11).

The results of the UMAP consisted of distinct clusters
for the different shape conformations (Figure 6). However,
each shape conformation was mapped onto multiple clus-
ters in the UMAP domain, some containing very few data
points.

Adv. Intell. Syst. 2025, €202500442 €202500442 (11 of 13)

4, Conclusion

The leaf density estimated for the artificial foliage falls within
values that can be estimated for natural foliage: for example, a
leaf area index (LAI) of 6 m?m % with an average leaf area
of 20cm” and a foliage thickness of 20 cm would correspond
to 16 000 leaves per cubic meter. Similarly, the correlation struc-
ture of the laboratory data obtained here (fast decorrelation away
from the diagonal down to a baseline) matches what has been
reported for echo data collected from natural vegetation in the
field.***”] The average off-diagonal correlation values obtained
here (0.22 for fans and motion) fell between the values that have
been reported for field data (mean values of 0.13%¢ and 0.531*7}).
This demonstrates that while the artificial foliage used in this
study may not replicate the structure of any natural foliage
exactly, it was able to emulate the random nature of the natural
clutter echoes.

The current results have hence established that a compact lab-
oratory setup can be used to generate large amounts of physical
clutter echoes that are not correlated beyond a baseline that is due
to the common input pulse, emulating the randomness of echoes
from natural cluttered environments. The results also further
underscore the sensitivity of clutter echoes to even minimal per-
turbations, such as small rotations of the sonar or fan agitation of
the foliage. The susceptibility to the outdoor equivalents of these
factors, such as minimal positioning sonar positioning errors or
environmental factors that change leaf orientation (e.g., wind,
rain, change in light conditions) suggests that clutter echoes
are not a reliable substrate for deterministic template matching
approaches.

Despite the random nature of the clutter echoes, a deep learn-
ing classifier was able to successfully distinguish between the dif-
ferent pinna shape conformations with a high level of accuracy.
Hence, the results provide a clear answer to the main research
question of the present study in that clutter echoes contain
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consistent effects that are due to the pinna shape they are
received with. Furthermore, even the simplest architecture (2-
D convolutional neural network) with a small number of param-
eters (40k) was capable of achieving high classification perfor-
mance (96.44%), highlighting that the ready accessibility of
the pinna shape information in the clutter echoes. While not
a necessary condition — as is the consistency — ready accessibility
of echo features that are due to different pinna shapes would
offer substantial advantages to exploiting any effects of variable
pinna shapes that could enhance encoding of sensory
information.

The influence that the time-frequency resolution of the echo
spectrogram exerted on classification performance indicates that
the classification-relevant information was most readily accessi-
ble to the classifier networks in the joint time-frequency domain.
The poor performance of all classifier networks on time-domain
only-representations (down to 10%) shows that a lack of
frequency-domain information made it hard for the classifiers
to accomplish their task, whereas the poor temporal resolution
associated with the long FFT window lengths tested only pro-
duced a small dent in classifier performance (not more than
5.05%). Since the observed spread between the true positive rates
associated with the different shape conformations was non-
negligible (about 8%), it may indicate that some shape conforma-
tions result in clearer or hence more separable signatures in the
clutter echoes. This could mean that some shape conformations
may be better suited for the encoding of certain sensory informa-
tion than others.

The observed improvements in classification accuracy with
increasing bandwidth suggest that the strength of the signal fea-
tures that are reflections of the respective pinna shape conforma-
tion increases with increasing bandwidth, especially around the
low end of the bandwidth values that were studied here. For the
dominant (second) harmonic of the biosonar pulses of greater
horseshoe bats, bandwidth values of up to 26 kHz have been
reported.®! Scaled to the size of the model used here, this would
correspond to a bandwidth of ~15kHz. While this bandwidth
still resulted in a classification performance of 87.18% overall
correct classification, well below the observed maximum, this
value still suggests that greater horseshoe bats should have ready
access to consistent effects of their pinna shape conformation on
clutter echoes. It should also be noted that the performance in
the present classification task is not necessary an upper bound
on the performance in any hypothetical sensory task that would
be performed based on signal features introduced into the clutter
echoes by virtue of the changing ear shapes since the time-
variant signatures could be used without telling different pinna
shapes apart.

Due to the random nature of the clutter echoes, it is highly
unlikely that the observed classification performance can be
linked to simple deterministic features of the echo spectrograms.
Instead, it is more likely that the classifier networks have learned
statistical invariants of the echo signals, but the exact nature of
these features will require additional in-depth research, e.g.,
using suitable transparent Al techniques. The UMAP results
amplify the finding that the different shape conformations can
be readily classified based on the clutter echoes recorded through
them. However, while the UMAP analysis provides evidence of
separability and distinct clustering, it does not reveal the exact

Adb. Intell. Syst. 2025, €202500442 €202500442 (12 of 13)

nature of the features being used for classification. It is also note-
worthy in this context that the echoes associated with each of the
different pinna shape conformations did not end up in single
compact clusters suggesting that mapping the echo features into
a two-dimensional representation posed a challenge.

Based on results from prior research, pinna motions observed
in horseshoe bats could serve the animals’ sensing in three dif-
ferent, but nonexclusive ways, i.e., through (i) a rigid component
that reorients the beampattern,*®*? (ii) a nonrigid component
that changes the pinna’s linear characteristics (beampattern)
by virtue of the pinna geometry,!"”*"! and (iii) a nonlinear, espe-
cially Doppler-based component.'**% The present work has
extended (ii) from deterministic input signals to clutter echoes.
It remains to be seen how rigid rotations and nonlinear signal
transformations in the periphery of a biomimetic sonar system
could affect clutter echoes.

The consistency and ready accessibility of the effects demon-
strated here suggest that further exploration of potential uses of
variant pinna shapes for the extraction of sensory information
from clutter echoes could be worthwhile. The next challenge
to continue this line of inquiry would be to identify a suitable
task for demonstrating the utility of pinna shape variations. It
should be possible to achieve moderate baseline performance
for any candidate task without shape deformations to demon-
strate principal feasibility. At the same time, the performance
with a single static shape should be low enough to leave room
for improvement through the incorporation of pinna deforma-
tions. Examples for such tasks could be found in all principal
categories of estimation tasks, i.e., target detection, localization,
and classification — as long as they are carried out in cluttered
environments and require the evaluation of clutter echoes.
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